A branch and cut algorithm for nonconvex quadratically constrained quadratic programming
نویسندگان
چکیده
منابع مشابه
Hidden convexity in some nonconvex quadratically constrained quadratic programming
We consider the problem of minimizing an indefinite quadratic objective function subject to twosided indelinite quadratic constraints. Under a suitable simultaneous diagonalization assumption {which trivially holds for trust region type problems), we prove that the original problem is equivalent to a convex minimization problem with simple linear constraints. We then consider a special problem ...
متن کاملA Branch and Cut Algorithm for NonconvexQuadratically Constrained Quadratic ProgrammingCharles
We present a branch and cut algorithm that yields in nite time, a globally -optimal solution (with respect to feasibility and optimality) of the nonconvex quadratically constrained quadratic programming problem. The idea is to estimate all quadratic terms by successive linearizations within a branching tree using Reformulation-Linearization Techniques (RLT). To do so, four classes of linearizat...
متن کاملA Sequential Quadratic Programming Algorithm for Nonconvex, Nonsmooth Constrained Optimization
We consider optimization problems with objective and constraint functions that may be nonconvex and nonsmooth. Problems of this type arise in important applications, many having solutions at points of nondifferentiability of the problem functions. We present a line search algorithm for situations when the objective and constraint functions are locally Lipschitz and continuously differentiable o...
متن کاملConvex quadratic relaxations of nonconvex quadratically constrained quadratic programs
Nonconvex quadratic constraints can be linearized to obtain relaxations in a wellunderstood manner. We propose to tighten the relaxation by using second order cone constraints, resulting in a convex quadratic relaxation. Our quadratic approximation to the bilinear term is compared to the linear McCormick bounds. The second order cone constraints are based on linear combinations of pairs of vari...
متن کاملSemidefinite programming versus the reformulation-linearization technique for nonconvex quadratically constrained quadratic programming
We consider relaxations for nonconvex quadratically constrained quadratic programming (QCQP) based on semidefinite programming (SDP) and the reformulation-linearization technique (RLT). From a theoretical standpoint we show that the addition of a semidefiniteness condition removes a substantial portion of the feasible region corresponding to product terms in the RLT relaxation. On test problems...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Programming
سال: 2000
ISSN: 0025-5610,1436-4646
DOI: 10.1007/s101079900106